You can also use Logarithmic Differentiation.
By tan x=sin x/cos x,
y=(sin^6x cdot tan^2 x)/(x^2+2)^2
=(sin^6x cdot (sin^2 x)/(cos^2 x))/(x^2+2)^2
=(sin^8 x)/(cos^2x(x^2+2)^2)
By taking the natural log of both sides,
Rightarrow ln y=ln((sin^8 x)/(cos^2 x(x^2+2)^2))
By Log Properties: ln(x cdot y)=ln x + ln y and ln(x/y)=ln x - ln y,
Rightarrow ln y=ln(sin^8 x)-ln(cos^2 x)-ln(x^2+2)^2
By Log Property: ln x^r=r ln x,
Rightarrow ln y=8ln(sin x)-2ln(cos x)-2ln(x^2+2)
By differentiating with respect to x using [ln(g(x))]'=(g'(x))/g(x),
Rightarrow (y')/y=8 cos x/sin x-2(-sin x)/(cos x)-2 (2x)/(x^2+2)
By cleaning up a bit,
Rightarrow (y')/y=8 cot x+2tan x-(4x)/(x^2+2)
By multiplying both sides by y,
Rightarrow y'=(8 cot x+2tan x-(4x)/(x^2+2))(sin^6x cdot tan^2 x)/(x^2+2)^2
I hope that this was clear.