How do you prove that the lim_(x to -2)(x^2 -5) = -1 using the formal definition of a limit?

1 Answer
Apr 13, 2017

We want to show:

forall epsilon>0, exists delta>0 s.t. 0<|x-(-2)|< delta Rightarrow |x^2-5-(-1)|< epsilon

Please see the details below.

Explanation:

forall epsilon>0, exists delta=min{epsilon/5,1}>0 s.t. 0<|x-(-2)|< delta

Rightarrow|x+2|< epsilon/5

and

Rightarrow|x+2|<1 Rightarrow-1 < x+2 < 1 Rightarrow-5< x-2 <-3 Rightarrow |x-2|<5

So, we have

|x^2-5-(-1)|=|x^2-4|=|x+2||x-2|< epsilon/5 cdot 5=epsilon

Hence, lim_(x to -2)(x^2-5)=-1

I hope that this was clear.