If y^3+y=x^2y3+y=x2, what is (dy)/(dx)dydx?

1 Answer
Apr 13, 2017

dy/dx=(2x)/(3y^2+1)dydx=2x3y2+1

Explanation:

y^3+y=x^2y3+y=x2

By differentiating w.r.t. xx,

Rightarrow 3y^2 dy/dx+ dy/dx=2x3y2dydx+dydx=2x

By factoring out dy/dxdydx,

Rightarrow (3y^2+1) dy/dx=2x(3y2+1)dydx=2x

By dividing both sides by (3y^2+1)(3y2+1),

Rightarrow dy/dx=(2x)/(3y^2+1)dydx=2x3y2+1

I hope that this was clear.