What is the value of \lim _ { x \rightarrow - 3} \frac { x ^ { 2} - 9} { x ^ { 2} - 2x - 15} ?

2 Answers
Apr 13, 2017

3/4

Explanation:

lim_(x to-3)(x^2-9)/(x^2-2x-15)

By factoring out the numerator and the denominator,

=lim_(x to -3)(cancel((x+3))(x-3))/(cancel((x+3))(x-5)) =(-3-3)/(-3-5)=(-6)/(-8)=3/4

I hope that this was clear.

Apr 13, 2017

lim_(x->-3)(x^2-9)/(x^2-2x-15)=3/4

Explanation:

Using L'Hopital's rule, we can work out the limit of an expression.

L'Hopital's rule:

lim_(x->a)(f(x))/(g(x))=lim_(x->a)(f'(x))/(g'(x))

lim_(x->-3)(x^2-9)/(x^2-2x-15)=lim_(x->-3)(x^2-9)^'/(x^2-2x-15)^'

=lim_(x->-3)(2x)/(2x-2)

=lim_(x->-3)x/(x-1)

lim_(x->-3)x/(x-1)=(-3)/(-3-1)=3/4