How do you multiply #2w ^ { 5} \cdot 4u ^ { 2} w ^ { 4} \cdot 2u#?

1 Answer
Apr 13, 2017

#2w^5*4u^2w^4*2u=16w^9u^3#

Explanation:

Given: #2w^5*4u^2w^4*2u#

To multiply the factors of this expression, we need to multiply integers and add exponents of like variables:

#2*4*2=16#

#w^5*w^4=w^(5+4)=w^9#

#u^2*u=u^(2+1)=u^3#

Altogether: #2w^5*4u^2w^4*2u=16w^9u^3#