How do you evaluate #\int _ { \frac { 1} { 6} \pi } ^ { \frac { 1} { 3} \pi } 3\tan ^ { 2} x d x#?

1 Answer
Apr 17, 2017

#2sqrt(3)-pi/2#

Explanation:

#int_(pi/6)^(pi/3)3tan^2x dx#

By the trigonometric identity: #tan^2x=sec^2x-1#,

#=3int_(pi/6)^(pi/3)(sec^2x-1)dx#

By finding antiderivatives,

#=3[tan x -x]_(pi/6)^(pi/3)#

By plugging in the upper and lower limits,

#=3[sqrt(3)-pi/3-(sqrt(3)/3-pi/6)] =3((2sqrt(3))/3-pi/6) =2sqrt(3)-pi/2#

I hope that this was clear.