How do you evaluate \int _ { \frac { 1} { 6} \pi } ^ { \frac { 1} { 3} \pi } 3\tan ^ { 2} x d x?

1 Answer
Apr 17, 2017

2sqrt(3)-pi/2

Explanation:

int_(pi/6)^(pi/3)3tan^2x dx

By the trigonometric identity: tan^2x=sec^2x-1,

=3int_(pi/6)^(pi/3)(sec^2x-1)dx

By finding antiderivatives,

=3[tan x -x]_(pi/6)^(pi/3)

By plugging in the upper and lower limits,

=3[sqrt(3)-pi/3-(sqrt(3)/3-pi/6)] =3((2sqrt(3))/3-pi/6) =2sqrt(3)-pi/2

I hope that this was clear.