If #k != 0#, what is # \lim _ { x \rightarrow k } \frac { x ^ { 2} - k ^ { 2} } { x ^ { 2} - k x } #?

2 Answers
Apr 18, 2017

#2#

Explanation:

#lim_(x to k)(x^2-k^2)/(x^2-kx)#

By factoring out the numerator and the denominator,

#lim_(x to k)((x+k)cancel((x-k)))/(x cancel((x-k)))=(k+k)/k=(2 cancel(k))/(cancel k)=2#

I hope that this was clear.

Apr 18, 2017

#2#

Explanation:

#"factorise and simplify"#

#rArr(cancel((x-k))(x+k))/(xcancel((x-k)))=(x+k)/x#

#rArrlim_(xtok)(x^2-k^2)/(x^2-kx)#

#=lim_(xtok)(x+k)/x#

#=(2k)/k=2#