If k != 0k0, what is \lim _ { x \rightarrow k } \frac { x ^ { 2} - k ^ { 2} } { x ^ { 2} - k x } ?

2 Answers
Apr 18, 2017

2

Explanation:

lim_(x to k)(x^2-k^2)/(x^2-kx)

By factoring out the numerator and the denominator,

lim_(x to k)((x+k)cancel((x-k)))/(x cancel((x-k)))=(k+k)/k=(2 cancel(k))/(cancel k)=2

I hope that this was clear.

Apr 18, 2017

2

Explanation:

"factorise and simplify"

rArr(cancel((x-k))(x+k))/(xcancel((x-k)))=(x+k)/x

rArrlim_(xtok)(x^2-k^2)/(x^2-kx)

=lim_(xtok)(x+k)/x

=(2k)/k=2