How do you solve 5e ^ { 5x } = 1890?

1 Answer
Apr 18, 2017

x approx1.864

Explanation:

The Equation is 5e^(5x)=1890

Dividing by 5 on both sides we get :

e^(5x)=378

Take natural log on both sides:

ln(e^(5x))=ln(378)

( using property ln(a^b)=bln(a) )

5xln(e)=ln(378)

As ln(e)=1

5x=ln (378)

5x=ln(2*3*3*3*7) (factorized 378)

(using property ln(a*b*c)=ln(a) + ln(b) + ln(c) )

5x=ln(2) +3ln(3) + ln(7)

x=1/5 (ln(2) +3ln(3) + ln(7))

x= 1/5 (.693 + 3(1.098) + 1.945)

x approx1.864