Find the length of the parametric curve x = e^t + e^-t, y = 5 - 2t from t = 0 to t = 1?

1 Answer
Apr 20, 2017

e-e^{-1}

Explanation:

By differentiating w.r.t. t,

{dx}/{dt}=e^t-e^{-t}

{dy}/{dt}=-2

Let us simplify:

sqrt((dx/dt)^2+(dy/dt)^2)

=sqrt((e^t-e^(-t))^2+(-2)^2)

=sqrt(e^(2t)+2+e^(-2t))

=sqrt((e^t+e^{-t})^2)

=e^t+e^{-t}

Now, we can find the arc length.

L=\int_0^1(e^t+e^(-t))dt=[e^t-e^{-t}]_0^1=e-e^{-1}

I hope that this was clear.