If both If bb(ulhata) and bb(ulhat b) are unit vectors and || bb(ul hata)-bb(ul hatb) || = sqrt(3) show that || bb(ul hata) + bb(ul hatb) || = 1?

3 Answers
Apr 28, 2017

To prove that |hata+hatb| = 1.
Look for the explanation below.

Explanation:

Let hat a = c hati + dhatj + ehatk and hat b = fhati+ghatj+hhatk
where sqrt(c^2+d^2+e^2) = 1 = sqrt(f^2+g^2+h^2)

=>color(green) [c^2+d^2+e^2 = 1 = f^2+g^2+h^2] ------------- 1.

=> hata - hatb = (c-f)hati + (d-g)hatj + (e-h)hatk

Since |hata-hatb| = sqrt3

=> sqrt((c-f)^2 + (d-g)^2 + (e-h)^2) = sqrt3

=>sqrt(c^2 + f^2 - 2cf + d^2 + g^2 -2dg + e^2+h^2 - 2eh) = sqrt3

=> sqrt(c^2+d^2+e^2 + f^2+g^2+h^2 -2(cf+dg+eh)) = sqrt3

Using values of c^2+d^2+e^2 & f^2+g^2+h^2 from 1.

=> sqrt(1+1 -2(cf+dg+eh)) = sqrt3

squaring both sides

=> 2-2(cf+dg+eh) = 3

=>color(green){2(cf+dg+eh) = -1} ---------- 2.

Now, the sum of hata and hatb

hata + hatb = (c+f)hati + (d+g)hatj + (e+h)hatk

Let us find magnitude of hata+hatb

|hata + hatb| = sqrt((c+f)^2 + (d+g)^2 + (e+h)^2)

=sqrt(c^2 + f^2 + 2cf + d^2 + g^2 +2dg + e^2+h^2 + 2eh)

=sqrt(c^2+d^2+e^2 + f^2+g^2+h^2 +2(cf+dg+eh))

Using values of c^2+d^2+e^2 & f^2+g^2+h^2 from 1. and value of 2(cf+dg+eh) form 2.

|hata + hatb| = sqrt(1+1-1) = sqrt1 = 1

therefore color(red){|hata + hatb| = 1}

Since the magnitude of hata+hatb is 1, it is a unit vector.
therefore sum of hata & hatb is a unit vector.

By definition then || bb(ulA) || ^2= bb(ulA* ulA)

So, if both If bb(ulhata) and bb(ulhat b) are unit vectors then:

|| bb(ulhat a) || = 1 iff bb(ula * ula) = 1

|| bb(ulhat b) || = 1 iff bb(ulb * ulb) = 1

And also we have:

bb(ula * ulb) = bb(ulb * ula)

We are given that || bb(ul hata) - bb(ul hatb) || = sqrt(3), and so:

|| bb(ul hata)-bb(ul hatb) ||^2 = 3

But using the above definition we also have that:

|| bb(ul hata)-bb(ul hatb) ||^2 = (bb(ul hata)-bb(ul hatb) * (bb(ul hata)-bb(ul hatb))

:. (bb(ul hata)-bb(ul hatb)) * (bb(ul hata)-bb(ul hatb)) = 3
:. bb(ul hata) * bb(ul hata) - bb(ul hata) * bb(ul hatb) - bb(ul hatb) * bb(ul hata) + bb(ul hatb) * bb(ul hatb) = 3
:. bb(ul hata) * bb(ul hata) - 2bb(ul hata) * bb(ul hatb) + bb(ul hatb) * bb(ul hatb) = 3
:. 1 - 2bb(ul hata) * bb(ul hatb) + 1= 3
:. 2 bb(ul hata) * bb(ul hatb) = -1

Similarly:

|| bb(ul hata) + bb(ul hatb) ||^2 = (bb(ul hata)+bb(ul hatb)) * (bb(ul hata)+bb(ul hatb))
" " = bb(ul hata) * bb(ul hata) + 2bb(ul hata) * bb(ul hatb) + bb(ul hatb) * bb(ul hatb)
" " = 1 -1 + 1
" " = 1

And so:

|| bb(ul hata) + bb(ul hatb) || = 1 \ \ \ QED

Apr 28, 2017

Refer to the Explanation.

Explanation:

Knowing that,

||hata+hatb||^2+||hata-hatb||^2=2[||hata|\^2+||hatb||^2], we have, by what is

given, ||hata+hatb||^2+(sqrt3)^2=2[1^2+1^2],

rArr ||hata+hatb||^2=4-3=1, or,

||hata+hatb||=1, as desired.

Enjoy Maths.!