Question #af5d8

1 Answer
May 2, 2017

a. cos 2x = 0
Unit circle gives:
2x=π2+2kπ and 2x=3π2+2kπ

2x=π2+2kπ --> x=π4+kπ
2x=3π2+2kπ --> x=3π4+kπ
Answers for (0,2π):
π4;3π4;5π4;7π4

b. cosx=cos2x=2cos2x1
Solve this quadratic equation for cos x:
2cos2xcosx1=0
Since a + b + c = 0, use shortcut.
The 2 real roots are: cos x = 1 and cos x = c/a = - 1/2
Trig table and unit circle give:
1/ cos x = 1 --> x = 0 and x = 2kpi
2/ cosx=12 --> x=±2π3+2kπ
Answers for (0,2π):
2π;±2π3
c. sin 3x = 0
Unit circle gives as solutions:
1/ 3x=0+2kπ --> x=2kπ3
2/ 3x=π+2kπ--> x=(2k+1)π3
3/ 3x = 2pi + 2kpi --> x = (2kpi)/3
Answers for (0,2π):
2π3;4π3;2π;π3;π