How do you solve the following system?: 8x +6y =9 , - 5x -7y = -28x+6y=9,5x7y=2

2 Answers
May 3, 2017

With some arrangement. x=51/26x=5126 and y=-29/26y=2926

Explanation:

Expand the first equation with term 5
Expand the second equation with 8.

Now you have:

40x+30y=4540x+30y=45
-40x-56y=-1640x56y=16
Now sum these up:
-26y=2926y=29

or y=-29/26y=2926

Now you can find x using the first or second equation:

8x-(6*29)/26=98x62926=9

8x=9+(6*29)/268x=9+62926

8x=(117/13) + ((3*29)/13)8x=(11713)+(32913)

8x=204/138x=20413

x=204/104x=204104

or

x=51/26x=5126

x = 1 25/26x=12526, y = -1 21/182y=121182

Explanation:

8x + 6y = 98x+6y=9 ....................(i)
-5x - 7y = -25x7y=2 ....................(ii)

You can solve this system by using Elimination method.

You can eliminate either xx or yy here.
I will eliminate xx.

So multiplying eq.(i) by +5+5 and eq(ii) by +8+8, you will get

40x + 30y = 4540x+30y=45 ......................(iii) &
-40x - 56y = -1640x56y=16 ........................(iv)

Adding eq (iii) and (iv), you will get

-26y = 2926y=29

rArr y = -29/26y=2926

Substituting y = -29/26y=2926 in eq(i), you will get

8x + (-29/26)*6 = 98x+(2926)6=9

rArr 8x = 9 + 87/138x=9+8713

rArr 8x = (117 + 87)/13 8x=117+8713

rArr 8x = 204/138x=20413

rArr x = 204/104 = 51/26x=204104=5126