Question #ca917

1 Answer
May 4, 2017

detail in explanation

Explanation:

  1. #n=1 #
    #1=1/4(5^1-1)# correspond
  2. let #n=k#
    #1+5+5^2+5^3+...+5^(k-1)=1/4(5^k-1)# is true
  3. if #n=k+1#
    #1+5+5^2+5^3+...+5^(k-1)+5^(k+1-1)=1/4(5^k-1)+5^k#
    then observe the right pattern temporarily
    #=>1/4*5^k+5^k-1/4#
    #=>(5/4)*5^k-1/4#
    #=>(1/4)*5*5^k-1/4#
    #=>1/4*(5^(k+1)-1)#
    so
    #1+5+5^2+5^3+...+5^(k-1)+5^(k+1-1)=1/4*(5^(k+1)-1)#
    is also true

conclusion:
by mathematical induction , #1+5+5^2+...+5^(n-1)=1/4(5^n-1) #
is true for all positive integer n