Question #a0c69

2 Answers
May 5, 2017

#1/2(1+x^2)(ln(1+x^2)-1)+C#

Explanation:

#int\ xln(1+x^2)\ dx#

Substitute #u=1+x^2# and #du=2x\ dx#.

#int\ (xln(u))/(2x)\ du=1/2int\ ln(u)\ du#

Use integration by parts: #int\ f\ dg=fg-int\ g\ df# with #f=ln(u),df=1/u\ du,dg=du,g=u#.

#1/2int\ ln(u)\ du=1/2(u ln(u)-int\ u*1/u\ du)=1/2(u ln(u)-int\ du)=1/2(u ln(u)-u+C)=1/2u(ln(u)-1)+C#.

Substitute #u=1+x^2# back.

#1/2(1+x^2)(ln(1+x^2)-1)+C#.

May 5, 2017

#intxln (1+x^2)dx=1/2 (1+x^2)(ln (1+x^2)-1)#

Explanation:

We know a formulae that
# intlntdt= t (lnt-1)#
Now let
#I=##intxln (1+x^2)dx#
Substitute #1+x^2=t#
#=>2xdx=dt#
#:. I=1/2intlntdt#
#:.I= 1/2 t (lnt-1)#
#:.I=1/2 (1+x^2)(ln (1+x^2)-1)#