What is the Cartesian form of (24,(5pi)/6))(24,5π6))?

1 Answer
May 14, 2017

Answer: (-12sqrt(3),12)(123,12)

Explanation:

Consider the following formulas to convert from polar to Cartesian:
x=rcos(theta)x=rcos(θ)
y=rsin(theta)y=rsin(θ)

Since we are given the polar coordinate in (r,theta)(r,θ) form, we can simply substitute into the above formulas:
x=24cos((5pi)/6)x=24cos(5π6)
y=24sin((5pi)/6)y=24sin(5π6)

Now, we can simplify each individually:
x=24cos((5pi)/6)x=24cos(5π6)
=24(-sqrt(3)/2)=24(32) using our special unit circle trig values
=-12sqrt(3)=123

y=24sin((5pi)/6)y=24sin(5π6)
=24(1/2)=24(12) using our special unit circle trig values
=12=12

Therefore, we have the point (-12sqrt(3),12)(123,12) in Cartesian form.