y=(x−3)2−4x2−x+4
1-take derivative of the function with respect to x
dydx=2(x−3)⋅1−8x−1
1-equalize with zero and solve for x
2(x−3)−8x−1=0
2x−6−8x−1=0
−6x−7=0
−6x=7
x=−67
write x=-6/7 in the original equation and calculate for y
y=(−67−3)2−4(−67)2−(−67)+4
y=(−277)2−4(3649)+67+4
y=72949−14449+347
y=58549+347
y=58549+23849
y=82349
y=16.8