How do you evaluate the definite integral by the limit definition given int 4dx4dx from [0,3]?

2 Answers
May 19, 2017

1212

Explanation:

int_0^3 4 dx = [4x]_0^3304dx=[4x]30

= [4*3] - [4 * 0] = 12=[43][40]=12

May 22, 2017

see below

Explanation:

int_0^3 4 dx304dx,

Integral by limit definition is given by

lim_(n ->oo) sum_i^n f(c_i) delta x

therefore,

delta x = (3-0)/n = 3/n
c_i = a + delta x = 0 + 3/ni = 3/ni

int_0^3 4 dx= lim_(n ->oo) sum_i^n f(c_i) delta x,

= lim_(n ->oo) sum_i^n f(3/ni) 3/n

for i = 1,2,3,...,n -> f(x) =4

= lim_(n ->oo) sum_i^n 4 *3/n = lim_(n ->oo) sum_i^n 12/n

=lim_(n ->oo) n 12/n = lim_(n ->oo) 12 = 12