What is the vertex of #f(x)= -x^2 + 6x + 3#?

1 Answer
May 23, 2017

#(3, 12)#

Explanation:

Use #x_(vertex)=(-b)/(2a)#
In this case, #a=-1, b=6#, so #x_(vertex)=3#
Then, the coordinate is #(3, f(3)) = (3, 12)#

Derivation of this formula:

We know the vertex's x position is the average of the two solutions. To find the x component of the vertex, we take the average:
#x_(vertex)=(x_1 + x_2) / 2#
We also know that:
#x_(1, 2)=(-b+-sqrt(b^2-4ac))/(2a)=(-b+-sqrt(Delta))/(2a)#
where #Delta# is the discriminate.

So then we can derive that:
#x_(vertex)=1/2 ((-b+sqrt(Delta))/(2a) + (-b-sqrt(Delta))/(2a)) =1/2((-b + sqrt(Delta) + -b - sqrt(Delta)) / (2a)) =1/2((-2b)/(2a))#
#=(-b)/(2a)#

Voila.