cos ((3pi)/4 - pi/3) = cos ((9pi - 4pi)/12) = cos ((5pi)/12)
Find cos ((5pi)/12) by using trig identity: 2cos^2 a = 1 + cos 2a
In this case, trig table gives: cos 2a = cos ((10pi)/12) = cos (5pi/6) = - sqrt3/2
Call cos ((5pi)/12) = cos t, we get: 2cos^2 t = 1 - sqrt3/2 = (2 - sqrt3)/2 cos^2 t = (2 - sqrt3)/4 cos t = +- sqrt(2 - sqrt3)/2
Since (5pi)/12 is in Quadrant 1, its cos is positive --> cos ((5pi)/12) = cos t = sqrt(2 - sqrt3)/2