Question #3960a

1 Answer
May 29, 2017

interval (pi/4, (3pi)/4)

Explanation:

Solve this trig inequality by the sign chart.
First solve sin x.cos 2x = 0
Either factor should be zero.
Consider the function F(x) = f(x).g(x) = (sin x)(cos 2x)
The common period of F(x ) is pi
a. sin x = 0--> x = 0 and x = pi.
For (0, pi), the function f(x) = sin x > 0
b. cos 2x = 0 --> 2x = pi/2 and 2x = 3pi/2 -->
x = pi/4 and x = (3pi)/4
Inside interval (pi/4, 3pi/4), the function g(x) = cos 2x < 0

Variation of f(x)
0 + + + + + + pi/4+ + + ++ +pi/2+ + + + + +(3pi)/4+ + ++ + + pi

Variation of g(x)
0+++++++++pi/4 - - - - - - - - pi/2 - - - - - - - (3pi)/4++++++++pi

The resultant F(x) = f(x).g(x) < 0 when x inside interval (pi/4, (3pi)/4)