Using the identities
#cos(a+b)=cosa cosb-sina sinb#
#sin(a+b)=sina cosb+cosa sinb#
we have
#cos(pi/2^(n-1)) = cos^2(pi/2^n)-sin^2(pi/2^n)#
#sin(pi/2^(n-1)) = 2cos(pi/2^n)sin(pi/2^n)#
Solving for #sin(pi/2^n), cos(pi/2^n)# we have
#sin(pi/2^n) = sqrt((1-cos(pi/2^(n-1)))/2)#
#cos(pi/2^n) = sin(pi/2^(n-1))/sqrt(2(1-cos(pi/2^(n-1))))#
and computing some samples...
#{(n, cos(pi/2^n), sin(pi/2^n)),
(0, -1, 0),
(1, 1/2 sqrt[2], 1/2 sqrt[2]),
(2, 1/2sqrt[2 + sqrt[2]], 1/2sqrt[2 - sqrt[2]]),
(3, 1/2 sqrt[2 + sqrt[2 + sqrt[2]]], 1/2 sqrt[2 - sqrt[2 + sqrt[2]]]),
(4, 1/2 sqrt[2 + sqrt[2 + sqrt[2 + sqrt[2]]]], 1/2 sqrt[2 - sqrt[2 + sqrt[2 + sqrt[2]]]]),(cdots, cdots,cdots))#