How do you solve x^2 - 4x = 5x24x=5 using the quadratic formula?

2 Answers
Jun 1, 2017

color(blue)(x=-1 or x=5x=1orx=5

Explanation:

General quadratic equation:

ax^2+bx+c=0ax2+bx+c=0

Quadratic formula:

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

x^2-4x=5x24x=5

:.x^2-4x-5=0

:.a=1,b=-4,c=-5

:.x=(-(-4)+-sqrt((-4)^2-4(1)(-5)))/(2(1))

:.x=(4+-sqrt(16+20))/2

:.x=(4+-sqrt36)/2

:.x=(4+-6)/2

:.x=(4+6)/2

or:

:.x=(4-6)/2

:.x=10/2 or x=(-2)/2

:.color(blue)(x=5 or color(blue)(x=-1

substitute color(blue)(x=-1

:.(-1)^2-4(-1)=5

:.1+4=5

:.color(blue)(color(blue)(5=5

substitute color(blue)(x=5

:.(5)^2-4(5)=5

:.25-20=5

:.color(blue)(5=5

Jun 1, 2017

x=5, x=-1

Explanation:

Subtract 5 from both sides.

x^2-4x-5=0

From this, a=1, b=-4, c=-5

The quadratic formula is (-b+-sqrt(b^2-4ac))/(2a)

Substituting the values

(-(-4)+-sqrt((-4)^2-4*1*-5))/(2*1)

(4+-sqrt(16+20))/2

(4+sqrt(36))/2

4/2+sqrt(36)/2, 4/2-sqrt(36)/2

2+sqrt(36)/2, 2-sqrt(36)/2

2+6/2, 2-6/2

2+3, 2-3

5, -1