How do you solve #5x^2+5=-13x# using the quadratic formula?

1 Answer
Jun 3, 2017

#x=-13/10+sqrt(69), or -13/10-sqrt(69)#

Explanation:

Firstly, in any quadratic equation, you want to get it in the form #ax^2+bx+c#.

To do that, add #13x# to both sides.

#5x^2+13x+5=0#

Now, we can get the following ; #a=5, b=13, c=5#

The quadratic formula is this : #(-b+-sqrt(b^2-4ac))/(2a)#

Substitute the values

#(-13+-sqrt(13^2-(4)(5)(5)))/((2)(5))#

#(-13+sqrt(69))/10#

#-13/10+sqrt(69), -13/10-sqrt(69)#