Question #fcb2e

2 Answers
Jun 12, 2017

xapprox0.251

Explanation:

cosxcos3x=0.707

f(x)=cosxcos3x-0.707=0

Use Newton method to find a zero of f

x_(n+1)=x_n-(f(x_n))/(f'(x_n))

f'(x)=-2sin2x-2sin4x

0.707=cos(1/4pi), so a good x_0 would be (1/4pi)/3=0.262

x_1=0.262-(cos(0.262)cos(3(0.262))-0.707)/(2sin(2(0.262)-2sin(4(0.262))=0.253

x_2=0.251

x_3=0.251

x_4=0.251

The iterations approach 0.251 to 0.251 is a solution to cosxcos3x=0.707

Jun 12, 2017

x = +- 14^@48

Explanation:

cos x.cos 3x = 0.707
Use trig identity:
cos a.cos b = (1/2)(cos (a - b) + cos (a + b))
In this case:
cos x.cos 3x = (1/2)(cos 2 x + cos 4x)-->
cos 2x + cos 4x = 2(0.707) = 1.414
Call 2x = X,
cos X + cos 2X - 1.414 = 0.
Replace cos 2X by (2cos^2 X - 1):
cos X + (2cos^2 X - 1) - 1.414 = 0
2cos^2 X + cos X - 2.414 = 0.
Solve this quadratic equation for cos X.
D = d^2 = b^2 - 4ac = 1 + 19.28 = 20.28 --> d = +- 4.50
There are 2 real roots:
cos X = -b/(2a) +- d/(2a) = - 1/4 +- (4.50)/4 = - 0.25 +- 1.125
a. cos X = - 1.375 (rejected as < - 1)
b. cos 2x = cos X = 0.875
Calculator and unit circle give:
2x = +- 28^@96 --> x = +- 14^@48
Check by calculator:
x = 14^@48 --> cos x = 0.97 --> 3x = 43^@44 --> cos 3x = 0.73.
cos x.cos 3x = 0.97(0.73) = 0.71. Proved.