Given: 5^(2x-3)-2^(5x+2)= 052x−3−25x+2=0
Move the second term to the right:
5^(2x-3)=2^(5x+2)52x−3=25x+2
Use the base 5 logarithm on both sides:
log_5(5^(2x-3))=log_5(2^(5x+2))log5(52x−3)=log5(25x+2)
Use the identity log_b(a^c) = (c)log_b(a)logb(ac)=(c)logb(a) on both sides:
(2x-3)log_5(5)=(5x+2)log_5(2)(2x−3)log5(5)=(5x+2)log5(2)
Use the property log_b(b) = 1logb(b)=1 on the left:
2x-3=(5x+2)log_5(2)2x−3=(5x+2)log5(2)
Use the distributive property on the right:
2x-3=5log_5(2)x+2log_5(2)2x−3=5log5(2)x+2log5(2)
Subtract 5log_5(2)x5log5(2)x from both sides:
(2-5log_5(2))x-3=2log_5(2)(2−5log5(2))x−3=2log5(2)
Add 3 to both sides:
(2-5log_5(2))x=3+2log_5(2)(2−5log5(2))x=3+2log5(2)
Divide both sides by the coefficient of x:
x=(3+2log_5(2))/(2-5log_5(2))x=3+2log5(2)2−5log5(2)
Convert to base e by using the conversion formula log_5(x)= ln(x)/ln(5)log5(x)=ln(x)ln(5):
x=(3+2ln(2)/ln(5))/(2-5ln(2)/ln(5))x=3+2ln(2)ln(5)2−5ln(2)ln(5)
Multiply by 1 in the form of ln(5)/ln(5)ln(5)ln(5):
x=(3ln(5)+2ln(2))/(2ln(5)-5ln(2))x=3ln(5)+2ln(2)2ln(5)−5ln(2)