Question #3624b

2 Answers
Jun 13, 2017

x=log_(25/32)500x=log2532500

Explanation:

5^(2x-3)-2^(5x+2)=052x325x+2=0
5^(2x-3)=2^(5x+2)52x3=25x+2
Taking the natural logarithm of both sides,
ln(5^(2x-3))=ln(2^(5x+2))ln(52x3)=ln(25x+2)
(2x-3)ln5=(5x+2)ln2(2x3)ln5=(5x+2)ln2
(2ln5)x-3ln5=(5ln2)x+2ln2(2ln5)x3ln5=(5ln2)x+2ln2
(2ln5)x-(5ln2)x=3ln5+2ln2(2ln5)x(5ln2)x=3ln5+2ln2
[ln(5^2)-ln(2^5)]x=ln(5^3)+ln(2^2)[ln(52)ln(25)]x=ln(53)+ln(22)
x=ln(5^3*2^2)/ln(5^2/2^5)x=ln(5322)ln(5225)
x=ln(125*4)/ln(25/32)x=ln(1254)ln(2532)
x=log_(25/32)500x=log2532500

Jun 13, 2017

Given: 5^(2x-3)-2^(5x+2)= 052x325x+2=0

Move the second term to the right:

5^(2x-3)=2^(5x+2)52x3=25x+2

Use the base 5 logarithm on both sides:

log_5(5^(2x-3))=log_5(2^(5x+2))log5(52x3)=log5(25x+2)

Use the identity log_b(a^c) = (c)log_b(a)logb(ac)=(c)logb(a) on both sides:

(2x-3)log_5(5)=(5x+2)log_5(2)(2x3)log5(5)=(5x+2)log5(2)

Use the property log_b(b) = 1logb(b)=1 on the left:

2x-3=(5x+2)log_5(2)2x3=(5x+2)log5(2)

Use the distributive property on the right:

2x-3=5log_5(2)x+2log_5(2)2x3=5log5(2)x+2log5(2)

Subtract 5log_5(2)x5log5(2)x from both sides:

(2-5log_5(2))x-3=2log_5(2)(25log5(2))x3=2log5(2)

Add 3 to both sides:

(2-5log_5(2))x=3+2log_5(2)(25log5(2))x=3+2log5(2)

Divide both sides by the coefficient of x:

x=(3+2log_5(2))/(2-5log_5(2))x=3+2log5(2)25log5(2)

Convert to base e by using the conversion formula log_5(x)= ln(x)/ln(5)log5(x)=ln(x)ln(5):

x=(3+2ln(2)/ln(5))/(2-5ln(2)/ln(5))x=3+2ln(2)ln(5)25ln(2)ln(5)

Multiply by 1 in the form of ln(5)/ln(5)ln(5)ln(5):

x=(3ln(5)+2ln(2))/(2ln(5)-5ln(2))x=3ln(5)+2ln(2)2ln(5)5ln(2)