Question #e21ad

1 Answer
Jun 18, 2017

#dy/dx=(3+sin(2x))/(log(2)(3x-cos(2x)))#

Explanation:

First, use the "change of base" for logarithms formula

#log_a(b)=log(b)/log(a)#

Then take the derivative

#d/dx[log_2(3x-cos(2x))]=d/dx[(log(3x-cos(2x)))/(log(2))]#

Factor out the constant

#=1/log(2) d/dx[log(3x-cos(2x))]#

Use the Chain Rule on the derivative of the log function

#=1/log(2)xx1/(3x-cos(2x))(d/dx[3x-cos(2x)])#

#=1/log(2)xx1/(3x-cos(2x))xx(d/dx[3x]-d/dx[cos(2x)])#

#=1/log(2)xx1/(3x-cos(2x))xx(3-(-sin(2x)))#

#=1/log(2)xx1/(3x-cos(2x))xx(3+sin(2x))#

#=(3+sin(2x))/(log(2)(3x-cos(2x)))#