How do you solve #\frac { 1} { 3} ( 3y + 3) - \frac { 3} { 8} = \frac { 3} { 4} y#?

1 Answer

#y=-5/2#

Explanation:

#1/3(3y+3)-3/8=3/4y#
Distribute #1/3# to #(3y+3)#.
#y+1-3/8=3/4y#
[Left Side] Combine the constants #1# and #-3/8#. Multiply #1# by #8/8# to give both constants the same denominator.
#y+(1*8/8)-3/8=3/4y#
#y+8/8-3/8=3/4y#
You can now evaluate #8/8-3/8#.
#y+5/8=3/4y#
Multiply the equation by #8# to cancel out the fractions.
#8(y+5/8=3/4y)#
#8y+5=6y#
Move all variables to one side and all constants to the other side and solve.
#2y=-5#
#y=-5/2#