If sin theta - cos theta = 1/2 , what is the value of sin theta + cos theta?

1 Answer
Jun 19, 2017

sin t + cos t = +- sqrt7/2

Explanation:

(sin t - cos t)^2 = 1 - 2sin t.cos t
(sin t + cos t)^2 = 1 + 2sin t.cos t
Add up the 2 equations:
(sin t - cos t)^2 + (sin t + cos t)^2 = 2
From given data -->
(sin t - cos t)^2 = (1/2)^2 = 1/4
Therefore:
(sin t + cos t)^2 = 2 - 1/4 = 7/4
(sin t + cos t) = +- sqrt7/2