How do you factor 196- n ^ { 6} p ^ { 4} q ^ { 2}?

2 Answers
Jun 19, 2017

See a solution process below:

Explanation:

This is a special form of the quadratic:

(a + b)(a - b) = a^2 - b^2

Substitute:

14 for a

n^3p^2q for b

Giving:

(14 + n^3p^2q)(14 - n^3p^2q) = 14^2 - (n^3p^2q)^2

(14 + n^3p^2q)(14 - n^3p^2q) = 196 - n^6p^4q^2

Jun 19, 2017

(14 + n^3p^2q) xx (14 - n^3p^2q)

Explanation:

196 - n^6 p^4 q^2

Solution

Look for common factors to factorize

^2 is common

:. (14^2 + n^(2xx3) xx p^(2xx2) xx q^2)

[(14xx14) + (n^3xxn^3) xx (p^2xxp^2) xx (qxxq)]

Factorize

(14 + n^3p^2q) xx (14 - n^3p^2q)