Question #eae4a

1 Answer

We have that

(cot2x)/(cscx)=((cos2x)/(sin2x))/(1/sinx)=(sinx*cos2x)/(sin2x)= ((sinx*cos2x)/(2sinxcosx))=1/2*((cos2x)/(cosx))cot2xcscx=cos2xsin2x1sinx=sinxcos2xsin2x=(sinxcos2x2sinxcosx)=12(cos2xcosx)

Hence

lim_(x->0) ((cot2x)/(cscx))=1/2*lim_(x->0) ((cos2x)/cosx)=1/2*(lim_(x->0) cos2x)/(lim_(x->0) cosx)=1/2*1/1=1/2limx0(cot2xcscx)=12limx0(cos2xcosx)=12limx0cos2xlimx0cosx=1211=12