How do you divide (3x ^ { 3} + 12x ^ { 2} - 21x - 23) \div ( x + 5)(3x3+12x221x23)÷(x+5)?

1 Answer
Jul 5, 2017

3x^2-3x-63x23x6 rr 77

Explanation:

Firstly, you divide 3x^33x3 by xx to get 3x^23x2. Then you do 3x^2(x+5)=3x^2+15x^23x2(x+5)=3x2+15x2.

3x^3+12x^2-3x^3-15x^2=-3x^23x3+12x23x315x2=3x2, the first value of the quptient is 3x^23x2.

Now you do (-3x^2)/x=-3x3x2x=3x. Then you do -3x(x+5)=-3x^2-15x3x(x+5)=3x215x.
(3x^2-21x)-(-3x^2-15x)=-21x+15x=-6x(3x221x)(3x215x)=21x+15x=6x. -3x3x is the second part of the quotient.

Now you do (-6x)/x=-66xx=6. Then you do -6(x+5)=-6x-306(x+5)=6x30.
(-6x-23)-(-6x-30)=-23+30=7(6x23)(6x30)=23+30=7. -66 is the last part of the quotient. 77 is the remainder.

Visual guide:

" "3x^2-3x-6 3x23x6 rr 77
(x+5)"/"(3x^3+12x^2-21x-23)(x+5)/(3x3+12x221x23)
" "-(3x^3+15x^2) (3x3+15x2)
" "(0-3x^2) (03x2)
" "-(-3x^2-15x) (3x215x)
" "(0-6x) (06x)
" "-(-6x-30) (6x30)
" "(0+7) (0+7)