How do you divide (3x3+12x221x23)÷(x+5)?

1 Answer
Jul 5, 2017

3x23x6 r 7

Explanation:

Firstly, you divide 3x3 by x to get 3x2. Then you do 3x2(x+5)=3x2+15x2.

3x3+12x23x315x2=3x2, the first value of the quptient is 3x2.

Now you do 3x2x=3x. Then you do 3x(x+5)=3x215x.
(3x221x)(3x215x)=21x+15x=6x. 3x is the second part of the quotient.

Now you do 6xx=6. Then you do 6(x+5)=6x30.
(6x23)(6x30)=23+30=7. 6 is the last part of the quotient. 7 is the remainder.

Visual guide:

3x23x6 r 7
(x+5)/(3x3+12x221x23)
(3x3+15x2)
(03x2)
(3x215x)
(06x)
(6x30)
(0+7)