cos4x=8cos4(x)8cos2x+1 and cos4x=8sin4(x)8sin2x+1,can u prove it?

1 Answer

LHS=cos4x

=2cos2(2x)1

=2(cos(2x))21

=2(2cos2x1)21

=2(4cos4x4cos2x+1)1

=8cos4x8cos2x+21

=8cos4x8cos2x+1=RHS

Again

LHS=cos4x

=2cos2(2x)1

=2(12sin2x))21

=2(14sin2x+4sin4x)1

=28sin2x+8sin4x1

=8sin4x8sin2x+1=RHS

sin2x+cos2x=1

cos2x=1sin2x

substitute in the equation as follows

8cos4x8cos2x+1=8cos2x(cos2x1)+1

=8(1sin2x)(1sin2x1)+1

=8(1sin2x)(sin2x)+1

=8sin4x8sin2x+1