How to use logarithm to solve for x?

enter image source here

Can someone please explain to me how to do from question e onwards? Thanks!

2 Answers
Jul 13, 2017

Each of these log questions are written in the form #a^(bx)=c#, as #log_a(b)^c-=clog_a(b)# (the power rule), then #log(a)^(bx)=log(c)-=bxlog(a)=log(c)#, where #x=log(c)/(blog(a))#," (change of base rule).

For example, let's take #2^(5x)=100#. We can take the log of both sides to get #log(2)^(5x)=log(100)#, using the power law we get: #5xlog(2)=log(100)#, so #x=log(100)/(5log(2))=1.32877124~~1.33#

Jul 14, 2017

#(e)color(white)(x) 1+log_(10)11#

Explanation:

#(e)#

#"using the "color(blue)"laws of logarithms"#

#•color(white)(x)logx^nhArrnlogx#

#•color(white)(x)log_b b=1#

#"given "10^x=110#

#"take " log_(10)" of both sides"#

#rArrlog_(10)10^x=log_(10)110#

#rArrxcancel(log_(10)10)^1=log_(10)(11xx10)#

#rArrx=log_(10)10+log_(10)11#

#rArrx=1+log_(10)11#