Question #52d88

2 Answers
Jul 19, 2017

#x=0 or x=pi/2 or x=pi#

Explanation:

We know that :

#sina+sinb=2sin((a+b)/2)cos((a-b)/2)#

so

#sin3x+sinx=0 iff 2sin((3x+x)/2)cos((3x-x)/2)=0 iff#

#2sin2xcosx=0iff sin2xcosx=0 iff #

#sin2x=0 or cosx=0#

Let's start with #sin2x=0#

#sin2x=0 iff 2x=2kpi or 2x=2kpi+piiff 2x=kpi iff#

#x=(kpi)/2, kin ZZ#

because #x in[0,pi],# #k# can be #0 or 1 or 2#

so #x# can be #0 or pi/2 or pi#

Let's start with #cosx=0# now :

#cosx=0 iff cosx=cos(pi/2) iff x=2kpi+-pi/2# the only accepted solution from here is #x=pi/2#

Now we gather all of our solutions so we have :

#x=0 or x=pi/2 or x=pi#

Jul 19, 2017

See below.

Explanation:

A different approach.

Using de Moivre's identity

#sin x=(e^(ix)-e^(-ix))/(2i)# we have

#(e^(3ix)-e^(-3ix))/(2i)+(e^(ix)-e^(-ix))/(2i)=0#

and now using #a^3-b^3=(a-b)(a^2+ab+b^2)# we have

#(e^(ix)-e^(-ix))(e^(2ix)+1+e^(-2ix))+(e^(ix)-e^(-ix))=0# or

#(e^(ix)-e^(-ix))(e^(2ix)+2+e^(-2ix))=0#

then

#{(e^(ix)-e^(-ix)=0),(e^(2ix)+2+e^(-2ix)=0):}#

and from

#e^(ix)-e^(-ix)=0->e^(-ix)(e^(2ix)-1)=0->2x=0+2kpi->x = kpi# because #e^(-ix) ne 0#

and from

#e^(2ix)+2+e^(-2ix)=0# calling #y = e^(2ix)# we have

#1/y(y+1)(y+1)=0->y = e^(2ix)=-1# because #e^(-2ix) ne 0#

so

#e^(2ix)=-1->2x=pi+2kpi->x = pi/2+kpi#

Resuming, the solutions are:

#x=(kpi)uu(pi/2+kpi),k=0,pm1,pm2,cdots#

and in the interval #[0,pi]# we have the set

#x = {0,pi/2,pi}#