How do you divide #(2x^3+3x^2-8x+3)div(x+3)#?
2 Answers
Jul 20, 2017
Explanation:
So
Jul 20, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(2x^2)(x+3)color(magenta)(-6x^2)+3x^2-8x+3#
#=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(magenta)(+9x)-8x+3#
#=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)color(magenta)(-3)+3#
#=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)+0#
#rArr(2x^3+3x^2-8x+3)/(x+3)#
#=(cancel((x+3))(2x^2-3x+1))/(cancel((x+3))#
#=2x^2-3x+1#