How do you divide #(2x^3+3x^2-8x+3)div(x+3)#?

2 Answers
Jul 20, 2017

#(2x^3+3x^2-8x+3)/(x+3)=2x^2-3x+1#

Explanation:

enter image source here

So

#(2x^3+3x^2-8x+3)/(x+3)=2x^2-3x+1#

Jul 20, 2017

#2x^2-3x+1#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(2x^2)(x+3)color(magenta)(-6x^2)+3x^2-8x+3#

#=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(magenta)(+9x)-8x+3#

#=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)color(magenta)(-3)+3#

#=color(red)(2x^2)(x+3)color(red)(-3x)(x+3)color(red)(+1)(x+3)+0#

#rArr(2x^3+3x^2-8x+3)/(x+3)#

#=(cancel((x+3))(2x^2-3x+1))/(cancel((x+3))#

#=2x^2-3x+1#