How do you find the inverse of #[(9,13), (27,36)]#?
3 Answers
Explanation:
Let's say
The inverse is then :
So
The inverse is
Explanation:
The inverse of the matrix
Let
The determinant of
As
Verification
Explanation:
#"given " A=((a,b),(c,d))#
#"then the inverse "A^-1" is"#
#A^-1=1/(detA)((d,-b),(-c,a))#
#detA=ad-bc#
#rArrdetA=(9xx36)-(13xx27)=-27#
#rArrA^-1=-1/27((36,-13),(-27,9))#
#color(white)(rAeeA^-1)=((-4/3,13/27),(1,-1/3))#