How do you solve \frac { 3} { 2} ( x - 10) ^ { 2} = \frac { 1} { 2}?

1 Answer
Jul 22, 2017

x={(30+sqrt3)/3 , (30-sqrt3)/3}

Explanation:

3/2(x-10)^2=1/2
Multiply both by 2
3(x-10)^2=1
3(x^2-20+100)=1
3x^2-60+300=1
3x^2-60+299=0

We know that if ax^2+bx+c=0 then x=(-b+-sqrt(b^2-4ac))/(2a)

So x=(-(-60)+-sqrt(60^2-4*3*299))/(2*3)
x=(60+-sqrt(3600-3588))/6
x=(60+-sqrt(12))/6
x=(60+-2sqrt3)/6
x=(30+-sqrt3)/3

So, x=(30+sqrt3)/3 or x=(30-sqrt3)/3