How do you solve #\frac { 3} { 2} ( x - 10) ^ { 2} = \frac { 1} { 2}#?

1 Answer
Jul 22, 2017

#x={(30+sqrt3)/3 , (30-sqrt3)/3}#

Explanation:

#3/2(x-10)^2=1/2#
Multiply both by 2
#3(x-10)^2=1#
#3(x^2-20+100)=1#
#3x^2-60+300=1#
#3x^2-60+299=0#

We know that if #ax^2+bx+c=0# then #x=(-b+-sqrt(b^2-4ac))/(2a)#

So #x=(-(-60)+-sqrt(60^2-4*3*299))/(2*3)#
#x=(60+-sqrt(3600-3588))/6#
#x=(60+-sqrt(12))/6#
#x=(60+-2sqrt3)/6#
#x=(30+-sqrt3)/3#

So, #x=(30+sqrt3)/3# or #x=(30-sqrt3)/3#