Integration by Substitution?

Show that:
#int_0^(pi/2)sin^2(x)dx=int_0^(pi/2)cos^2(x)dx#

3 Answers
Jul 25, 2017

#int_0^(pi/2) cos^2(x)dx = int_0^(pi/2) sin^2(x)dx#

#int_0^(pi/2) cos^2(x)dx - int_0^(pi/2) sin^2(x)dx = 0#

using the linearity of the integral:

#int_0^(pi/2) (cos^2(x)dx - sin^2(x))dx = 0#

and the trigonometric identity: #cos(2alpha) = cos^2alpha -sin^2alpha#

#int_0^(pi/2) cos(2x)dx = 0#

In fact:

#int_0^(pi/2) cos(2x)dx = 1/2 [sin(2x)]_0^(pi/2) = 0#

which proves the point.

Jul 25, 2017

#int_0^(pi/2)sin^2xdx=int_0^(pi/2)cos^2xdx iff#

#int_0^(pi/2)cos^2xdx-int_0^(pi/2)sin^2xdx=0 iff#

#int_0^(pi/2)(cos^2x-sin^2x)dx=0iff#

#int_0^(pi/2)cos2xdx=0 iff#

Let's substitude #u=2x =>du=2dx=>dx=(du)/2# :

#int_0^picosu(du)/2=0iff#

#1/2[sinu]_0^pi=0iff(sinpi-sin0)=0iff#

#0=0# which is true, so the first statement is true.

Jul 25, 2017

Kindly, refer to the Explanation.

Explanation:

Using the well-known Result : #int_0^af(x)dx=int_0^af(a-x)dx,#

we have, #int_0^(pi/2)sin^2xdx=int_0^(pi/2)sin^2(pi/2-x)dx,#

#=int_0^(pi/2)cos^2xdx.#

Hence, the Proof.