How do you solve 3\frac { 11} { 24} - x = 1 1/6+ 1\frac { 1} { 9}?

1 Answer
Aug 2, 2017

x=85/72=1 13/72

Explanation:

3 11/24-x=1 1/6+1 1/9

Convert all the mixed fractions into improper fractions. To do that we multiply the whole number with the denominator, add the product to the numerator, and place the result on the same denominator.

83/24-x=7/6+10/9

Now multiply all terms by the LCM of the denominator. We calculate the LCM by writing down the multiples of each denominator.

24=>24, 48, color(blue)72
6=>6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, color(blue)72
9=>9, 18, 27, 36, 45, 54, 63, color(blue)72

Multiplying all terms by 72, we write.

(72xx83/24)-(72x)=(72xx7/6)+(72xx10/9)

(3cancel72xx83/cancel24)-(72x)=(12cancel72xx7/cancel6)+(8cancel72xx10/cancel9)

(3xx83)-72x=(12xx7)+(8xx10)

249-72x=84+80

249-72x=164

Subtract 164 from each side.

249-164-72x=164-164

85-72x=0

Add 72x to each side.

85=72x

Divide both sides by 72.

85/72=x

x=85/72=1 13/72