What is the value of root5 -151?

3 Answers
Aug 3, 2017

see below

Explanation:

root(5)(-1)=(-1)^(1/5)51=(1)15

Since,
e^(ipi),e^(3ipi),e^(5ipi),e^(-ipi),e^(-3ipi)=-1eiπ,e3iπ,e5iπ,eiπ,e3iπ=1

=>root(5)(-1)=(e^(ipi))^(1/5)=e^((ipi)/5)=cos(pi/5)+i*sin(pi/5)51=(eiπ)15=eiπ5=cos(π5)+isin(π5)

Similarly,

=>root(5)(-1)=e^(ipi/5),e^(3ipi/5),e^(ipi),e^(-ipi/5),e^(-3ipi/5)51=eiπ5,e3iπ5,eiπ,eiπ5,e3iπ5

=>root(5)(-1)=cos(pi/5)+i*sin(pi/5), cos((3pi)/5)+i*sin((3pi)/5), cos(pi)+i*sin(pi), cos(-pi/5)+i*sin(-pi/5), cos((-3pi)/5)+i*sin((-3pi)/5)51=cos(π5)+isin(π5),cos(3π5)+isin(3π5),cos(π)+isin(π),cos(π5)+isin(π5),cos(3π5)+isin(3π5)

=>root(5)(-1)=(0.80902+-0.58779i), (-1), (-0.30902+-0.95106i)51=(0.80902±0.58779i),(1),(0.30902±0.95106i)

Aug 3, 2017

root5(-1) = -151=1

Explanation:

Consider other roots of 11

sqrt1 = 1" "rArr1^2 =11=1 12=1

root3(-1) = -1" "rArr (-1)^3 = (-1)(-1)(-1) = -131=1 (1)3=(1)(1)(1)=1

root5(-1) = -151=1

[(-1)^5 = (-1)(-1)(-1)(-1)(-1)=-1][(1)5=(1)(1)(1)(1)(1)=1]

If the radicand is negative, the root must have been a negative number, raised to an odd power.

Aug 3, 2017

It depends...

Explanation:

The expression root(5)(-1)51 can mean the real fifth root or the principal primitive complex fifth root of -11.

As a real valued function of reals, x^5x5 is strictly monotonically increasing and continuous, with domain and range the whole of RR. As a result, the real fifth root of any real number is uniquely defined. In the case of -1, we find:

(-1)^5 = -1

and hence:

root(5)(-1) = -1

As a complex valued function of complex numbers, x^5 is many to one, with exactly 5 solutions to x^5 = -1, namely:

e^(pi/5i) = 1/4(1+sqrt(5))+1/4sqrt(10-2sqrt(5))i

e^((3pi)/5i) = 1/4(1-sqrt(5))+1/4sqrt(10+2sqrt(5))i

e^(pii) = -1

e^((7pi)/5i) = 1/4(1-sqrt(5))-1/4sqrt(10+2sqrt(5))i

e^((9pi)/5i) = 1/4(1+sqrt(5))-1/4sqrt(10-2sqrt(5))i

The first of these can be considered the principal complex fifth root of -1.