Question #d6553

4 Answers
Aug 4, 2017

We know

1=sin^2x+cos^2x

=>1-sin^2x=cos^2x

=>(1-sinx)(1+sinx)=cosx*cosx

=>(1-sinx)/cosx=cosx/(1+sinx)

Aug 4, 2017

cos^2(x)=cos^2(x),
=> cos^2(x)/cos^2(x)=1.

The identity sin^2(x)+cos^2(x)=1 gives cos^2(x)=1-sin^2(x). Then,

cos^2(x)/(1-sin^2(x))=1,
=> cos^2(x)/((1-sin(x))(1+sin(x))=1,
=> cos(x)/(1+sin(x))=(1-sin(x))/(cos(x))

Aug 4, 2017

The answer is below.

Explanation:

![https://useruploads.socratic.org/v2bEtT2SSmBbI2TzOPDQ_15018465453151591985664.jpg)

Aug 4, 2017

See explanation

Explanation:

(1-sinx)/(cosx)=(cosx)/(1+sinx)

L.H.S:

:.=(1-sinx)/(cosx) xx (1+sinx)/(1+sinx)

:.=((1-sinx)(1+sinx))/(cosx(1+sinx)

:.=(1-sin^2x)/(cosx(1+sinx))

Identity:

:.color(magenta)(sin^2x+cos^2x=1

:.cos^2x=1-sin^2x

:.(cancel(cos^2x)^(color(magenta)cosx))/(cancelcosx^color(magenta)1(1+sinx)

:.=color(magenta)((cosx)/(1+sinx)

L.H.S=R.H.S. Proven