How do you find the zeros, real and imaginary, of y= -x^2-2x-4y=x22x4 using the quadratic formula?

1 Answer
Aug 8, 2017

x==1+sqrt3ix==1+3i
x=-1-sqrt3ix=13i

Explanation:

Identify the values of a,b & ca,b&c and substitute in using the quadratic formula: x = (-b \pm sqrt(b^2-4ac)) / (2a) x=b±b24ac2a

a=-1a=1

b=-2b=2

c=-4c=4

x = (-(-2) \pm sqrt((-2)^2-4(-1)(-4))) / (2(-1)) x=(2)±(2)24(1)(4)2(1)

x = (2 \pm sqrt(4-16)) / (-2) x=2±4162

x = (2 \pm sqrt(-12)) / (-2) x=2±122

x = (2 \pm 2 sqrt(3)i) / (-2) x=2±23i2

x = -1 \pm sqrt(3)ix=1±3i

x=1+sqrt3ix=1+3i, x=-1-sqrt3ilarrx=13i Final solutions