How do you simplify \frac { \sqrt { 2- \sqrt { 3} } } { \sqrt { 2+ \sqrt { 3} } }?

2 Answers
Aug 9, 2017

-(13-4sqrt(3))/13

Explanation:

Square top and bottom, to remove both square roots:
(sqrt(2-sqrt(3))/sqrt(2+sqrt(3)))^2=(sqrt(2-sqrt(3)))^2/(sqrt(2+sqrt(3)))^2=(2-sqrt(3))/(2+sqrt(3))

Now, to rationalise the denominator by multiplying the top and bottom by the negative of the square root:
((2-sqrt(3))(2-sqrt(3)))/((2+sqrt(3))(2-sqrt(3)))=(4-2sqrt(3)-2sqrt(3)+9)/(4+2sqrt(3)-2sqrt(3)-9)=(13-4sqrt(3))/(-13)=-(13-4sqrt(3))/13

Aug 9, 2017

= (2 - sqrt3)

Explanation:

sqrt(2 - sqrt3)/sqrt(2+sqrt3) => Rationalize the denominator:

= sqrt(2 - sqrt3)/sqrt(2+sqrt3) * sqrt(2 - sqrt3)/sqrt(2-sqrt3)

= (2 - sqrt3)/sqrt(4-sqrt9)

= (2 - sqrt3)/sqrt(4 - 3)

= (2 - sqrt3)/sqrt1

= (2 - sqrt3)