How do you find the roots, real and imaginary, of y= x^2 - 3x + 44-(3x-1)^2 y=x23x+44(3x1)2 using the quadratic formula?

1 Answer
Aug 9, 2017

You should know the 2 formulas:
1.) (a - b)^2 = a^2+b^2-2ab(ab)2=a2+b22ab
2.) Quadratic Formula: (-b+-sqrt(b^2-4ac))/(2a)b±b24ac2a

Explanation:

Step 1.) Open the bracket term in question by formula no.1 and solve it further:

y=x^2-3x+44-(3x-1)^2y=x23x+44(3x1)2
y=x^2-3x+44-(9x^2+1-6x)y=x23x+44(9x2+16x)

Now solvng it further:
y=x^2-3x+44-9x^2-1+6xy=x23x+449x21+6x
y=-8x^2+3x+43y=8x2+3x+43

Step 2.) Now applying Quadratic formula:

(-b+-sqrt(b^2-4ac))/(2a)b±b24ac2a
x= (-3+-sqrt(3^2-4(43)(-8)))/(2(-8)x=3±324(43)(8)2(8)
x= (-3+-sqrt(9+1376))/(-16)x=3±9+137616
x= (-3+-sqrt(1385))/(-16)x=3±138516
x= (-3+-37.21)/(-16)x=3±37.2116

Case 1:
when the sign is positive in between:
x= (-3+37.21)/(-16)x=3+37.2116
x= (34.21)/(-16)x=34.2116
x=- 2.13x=2.13

Case 2:
when the negative is positive in between:
x= (-3-37.21)/(-16)x=337.2116
x= (-40.21)/(-16)x=40.2116
x= 2.51x=2.51

That's all, Thank You.