How do you solve \frac { 3} { n } + \frac { 3} { n ^ { 2} - 5n } = \frac { 1} { n ^ { 2} - 5n }3n+3n25n=1n25n?

1 Answer
Aug 14, 2017

"Answer :"n=13/3Answer :n=133

Explanation:

3/n+3/(n^2-5 n)=1/(n^2-5 n)3n+3n25n=1n25n

3/n=1/(n^2-5 n)-3/(n^2-5 n)3n=1n25n3n25n

3/n=(-2)/(n^2-5 n)3n=2n25n

-2 n=3(n^2-5 n)2n=3(n25n)

-2 n=3 n^2-15n2n=3n215n

3n^2-15n+2n=03n215n+2n=0

3 n^2-13n=03n213n=0

3n^2=13n3n2=13n

3cancel(n^2)=13cancel(n)

3n=13

(cancel(3)n)/cancel(3)=(13)/3

n=13/3