How do you simplify \frac { \sqrt { x - 5} } { 3} - \frac { 2} { \sqrt { x - 5} }?

2 Answers
Aug 15, 2017

((x - 11) (sqrt (x - 5)))/(3(x - 5)

Explanation:

\frac { \sqrt { x - 5} } { 3} - \frac { 2} { \sqrt { x - 5} }

Taking L.C.M

rArr ((sqrt (x - 5)) (sqrt (x - 5)) - ( 2 xx 3))/((3) sqrt (x - 5))

rArr (sqrt ((x - 5))^2 - 6)/(3sqrt (x - 5))

rArr (x - 5 - 6)/(3sqrt (x - 5))

rArr (x - 11)/(3sqrt (x - 5))

rArr (x - 11)/(3sqrt (x - 5)) xx (sqrt (x - 5))/(sqrt (x - 5))

rArr ((x - 11) (sqrt (x - 5)))/(3sqrt (x - 5)^2

rArr ((x - 11) (sqrt (x - 5)))/(3 xx (x - 5)

rArr ((x - 11) (sqrt (x - 5)))/(3(x - 5)

Aug 15, 2017

=(x-5 -6sqrt(x-5))/(3(x-5))

Explanation:

Before we subtract the fractions, let's change the second one so there is no radical in the denominator.

sqrt(x-5)/3 - 2/sqrt(x-5) xx sqrt(x-5)/sqrt(x-5)color(white)(xxxxx)color(blue)([ sqrt(x-5)/sqrt(x-5) =1]

=sqrt(x-5)/3 - (2sqrt(x-5))/((x-5))" "larr (sqrt(x-5)^2 = (x-5))

=(sqrt(x-5)sqrt(x-5)" " -" " 3xx2sqrt(x-5))/(3(x-5)

=(x-5 -6sqrt(x-5))/(3(x-5))