Question #71188

1 Answer
Aug 15, 2017

#1-sin x#

Explanation:

#(1 - sin^2 x)/(1+sin x)#

We can use the Pythagorean identity #color(blue)(sin^2x + cos^2x = 1)# and rearrange it as #cos^2x = 1 - sin^2 x#.

#cos^2x / (1+sin x)#

Now we can multiply the numerator and denominator by #(1-sin x)/(1-sin x)#, which is a valid step since it equals #1#.

#cos^2x / (1+sin x) * color(blue)((1-sin x)/(1-sin x))#

#(cos^2x (1-sin x)) / ((1+sin x)(1-sin x))#

Since #(a+b)(a-b) = a^2 - b^2#, we can rewrite the denominator as

#(cos^2x (1-sin x)) / (1^2 - sin^2x)#

As stated above, #1 - sin^2x = cos^2x#.

#(cancel(cos^2x) (1-sin x)) / cancel(cos^2x)#

Finally, we can cancel out #cos^2x#, leaving us with #color(red)(1-sin x)#.