How do you multiply and simplify \frac { x ^ { 2} + 5x - 14} { x ^ { 2} + 6x - 16} \cdot \frac { 2x + 16} { x + 6}x2+5x14x2+6x162x+16x+6?

2 Answers

(2x+14)/(x+6)2x+14x+6

Explanation:

Factor numerators and denominators to get

((x+7)(x-2))/((x+8)(x-2)) xx (2(x+8))/(x+6).(x+7)(x2)(x+8)(x2)×2(x+8)x+6.

Cancel like factors to get"

((x +7) xx2)/(x+6) (x+7)×2x+6

= (2x+14)/(x+6)=2x+14x+6

Aug 21, 2017

(2x+14)/(x+6)2x+14x+6

Explanation:

First, let's factor everything that can be factored. I'm going to look at each set of terms individually. Note that x+6x+6 cannot be factored.

x^2+5x-14=(x+7)(x-2)x2+5x14=(x+7)(x2)

x^2+6x-16=(x+8)(x-2)x2+6x16=(x+8)(x2)

2x+16=2(x+8)2x+16=2(x+8)

Now that we have the factored terms, let's put these factors into the expression.

((x+7)(x-2))/((x+8)(x-2))*(2(x+8))/(x+6)(x+7)(x2)(x+8)(x2)2(x+8)x+6

Now that we have the factored terms, we see that the numerator and denominator have x-2x2 and x+8x+8 in common. These terms will cancel out.

((x+7)(x-2))/((x+8)(x-2))*(2(x+8))/(x+6) ->(x+7)(x2)(x+8)(x2)2(x+8)x+6

((x+7)(cancel(x-2)))/((cancel(x+8))(cancel(x-2)))*(2(cancel(x+8)))/(x+6) ->

When you cancel the terms out, you get the following.

(2(x+7))/(x+6)=(2x+14)/(x+6)