Find integration of tan^3 3x sec^4 3x dx?

2 Answers
Aug 22, 2017

Explanation:

using some trignometric formulae

Aug 22, 2017

int tan^3 3x sec^4 3x dx can also be written as (tan^6 3x)/18 + (tan^4 3x)/12 +C

Explanation:

Another answer sows how to get

int tan^3 3x sec^4 3x dx = (sec^6 3x)/18 + (sec^4 3x)/12 +C .

We can use d/dx(tanx) = sec^2 x to reason:

int tan^3 3x sec^4 3x dx = int tan^3 3x (sec^2 3x) sec^2 3x dx

= int tan^3 3x (tan^2 3x + 1) sec^2 3x dx

= int (tan^5 3x + tan^3 3x) sec^2 3x dx

= int (tan^5 3x) sec^2 3x dx + int (tan^3 3x) sec^2 3x dx

= 1/3 (tan^6 3x)/6 + 1/3 (tan^4 3x)/4 +C

= (tan^6 3x)/18 + (tan^4 3x)/12 +C