Question #ffc58

2 Answers
Aug 27, 2017

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)cos(A+B)=cosAcosB-sinAsinB

•color(white)(x)sin(A-B)=sinAcosB-cosAsinB

•color(white)(x)cos2A=cos^2A-sin^2A

"consider left hand side"

sinx(cosxcosy-sinxsiny)-cosx(sinxcosy-cosxsiny)

=cancel(sinxcosxcosy)-sin^2xsinycancel(-sinxcosxcosy)+cos^2xsiny

=siny(cos^2x-sin^2x)

=sinycos2x=" right hand side "rArr" proved"

Aug 27, 2017

We have: sin(x) cos(x + y) - cos(x) sin(x - y)

Let's apply the compound angle identities for sin(x) and cos(x):

= sin(x) cdot (cos(x) cos(y) + sin(x) sin(y)) - cos(x) cdot (sin(x) cos(y) - cos(x) sin(y))

= sin(x) cos(x) cos(y) + sin^(2)(x) sin(y) - sin(x) cos(x) cos(y) - cos^(2)(x) sin(y)

= sin^(2)(x) sin(y) - cos^(2)(x) sin(y)

= sin(y) (sin^(2)(x) - cos^(2)(x))

= sin(y) (- (cos^(2)(x) - sin^(2)(x)))

= - sin(y) (cos^(2)(x) - sin^(2)(x))

Then, let's apply the double angle identity for cos(x); cos(2 x) = cos^(2)(x) - sin^(2)(x):

= - sin(y) cdot cos(2 x)

= - cos(2 x) sin(y)