Question #ffc58
2 Answers
Explanation:
"using the "color(blue)"trigonometric identities"
•color(white)(x)cos(A+B)=cosAcosB-sinAsinB
•color(white)(x)sin(A-B)=sinAcosB-cosAsinB
•color(white)(x)cos2A=cos^2A-sin^2A
"consider left hand side"
sinx(cosxcosy-sinxsiny)-cosx(sinxcosy-cosxsiny)
=cancel(sinxcosxcosy)-sin^2xsinycancel(-sinxcosxcosy)+cos^2xsiny
=siny(cos^2x-sin^2x)
=sinycos2x=" right hand side "rArr" proved"
We have:
Let's apply the compound angle identities for
Then, let's apply the double angle identity for